524Uploads
215k+Views
114k+Downloads
Design, engineering and technology
Modelling pulley systems
Model and construct 3 simple pulley systems, designed to lift loads
Mechanical systems allow us to perform tasks that would otherwise be very difficult, such as pulley systems that lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials.
This KS4 maths resource focuses on the use and application of pulley systems.
Activity info, teachers’ notes and curriculum links
An engaging activity in which students will model and construct three different examples of pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work and their practical uses.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Produce a treadle pump
Make a working prototype of a treadle pump that is designed to help people living in remote villages source water.
Learners will create a functional and fully operational prototype of a treadle pump designed to lift water from wells in this task. This project aims to enhance their ability to effectively design products that address social needs. It will also improve their manufacturing skills and capacity to choose suitable materials, tools, and equipment.
This activity can be utilised as the final part of a four-lesson unit, following the activities “Investigating Problems Faced by People in Remote Areas,” “Methods of Obtaining Water,” and “Card Modelling of a Treadle Pump.” Alternatively, it can be used as a standalone main lesson to provide comprehensive knowledge and understanding of the subject matter.
How long will this activity take?
This activity will take approximately 60-120 minutes to complete. Download the activity sheet below for a full lesson plan.
The engineering context
Integrating social issues into the design process holds significant importance in all GCSE Design and Technology 9-1 courses, as well as the GCSE Engineering 9-1 course. Students are obligated to learn about this crucial aspect. Furthermore, they must also learn about carefully selecting and utilising materials, tools, and equipment to create prototypes.
The knowledge acquired through these courses can extend beyond the classroom, finding practical applications in the future when designing and producing products to meet the social needs of individuals and communities.
Suggested learning outcomes
By the end of this activity, students will be able to manufacture a working prototype of a treadle pump for people living in a remote village, they will be able to select appropriate materials, tools and equipment for the activity, and they will be able to understand the use and application of wasting, joining, forming and finishing techniques.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Methods of obtaining water
Design a treadle pump
This is one of a series of GCSE DT resources designed to support teachers to deliver high-quality, inspiring lessons. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on designing ideas to solve the problem of water supply faced by people living in remote villages.
One challenge that many people living in dry, remote areas face is the sourcing of water to irrigate crops and therefore grow food. A treadle pump can be used to make this much easier and far less time consuming.
Activity info, teachers’ notes and curriculum links
How does a water pump work? In this activity, learners will produce design ideas for a treadle pump that can raise water from wells. It will develop their ability to design products that meet a social need. It will also develop their skills in the drawing techniques used by designers and engineers to communicate their ideas.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Investigating problems faced by people in remote areas
Craft solutions for clean water and make a proto-type of an idea
What is a treadle pump and how does it work? This is one of a series of resources designed to support the delivery of DT at secondary, using Design & Technology and Engineering. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on the social problems and challenges faced by people living in remote parts of the world, and allows students to craft solutions to these issues.
Millions of people live in remote parts of the world. They face many challenges, such as limited access to electricity and difficulties in sourcing food and water.
Activity info, teachers’ notes and curriculum links
In this activity, secondary learners will investigate some of the problems faced by people living in remote areas, and how they might be solved. It will build their knowledge of social issues and how this affects the design of products and systems.
The DT KS4 activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Nuclear energy debate: pros and cons
Role play about the advantages and disadvantages of nuclear energy
As we rely so heavily on electrical energy in our lives, it’s crucial for students to understand the processes and implications of its generation. Our role play activity will engage the whole classroom through debate, where participants will discuss the advantages and disadvantages of generating electrical energy using nuclear fuel.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT).
Activity: Role play about the advantages and disadvantages of nuclear energy
In this activity, learners learn about nuclear energy and then assume various roles to discuss and debate a proposal to construct a new nuclear power station in their local area.
Learners will review how nuclear power is generated and then weigh its pros and cons. By executing a group role play, students will gain a deeper understanding of the topic. The activity concludes with class feedback, where learners justify their decisions, promoting reflective thinking.
Download our activity overview and presentation for a detailed lesson plan for teaching students about nuclear energy.
The engineering context
Engineering is all about problem-solving and making informed decisions. By debating the construction of a new nuclear power station, students will get a glimpse into the challenges engineers face daily. This activity will inspire them to think like engineers, weighing the pros and cons before making decisions that impact society.
Suggested learning outcomes
This activity is designed to help students grasp how electrical energy is generated from nuclear fuel and comprehend both the benefits and drawbacks of this method.
Furthermore, it encourages learners to apply their knowledge to real-world situations, enhancing their understanding of the issues surrounding electrical energy generation.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our classroom lesson plan and our PowerPoint presentation.
Please do share your highlights with us @IETeducation
Design a hoverboard
An activity for GCSE students to design a levitating hoverboard that works using magnetism
1980s films predicted that by 2015 people using hoverboards would be a very common sight, but only now is the technology finally reaching the point where it can become a reality.
Students will combine their creative prowess with scientific principles as they tackle the challenge of designing a functional hoverboard that defies gravity through the power of magnetism. This hands-on experience will not only push the boundaries of students’ creativity but also empower them to apply scientific theory in a tangible and captivating way.
Activity introduction
This activity is one of a series of free resources designed to support the delivery of the new 9-1 GCSEs in Design & Technology, and Engineering. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on designing a hoverboard that uses magnetism and magnetic fields.
Students will need to design a hoverboard for teenagers that can move forward without touching the ground. The product should use a suitable method of keeping the board in the air, such as magnetism.
Learners should draw on their scientific knowledge of magnetism and magnetic fields and focus on applying this in an engineering/design context.
Magnetism is a fundamental scientific phenomenon. Utilising this has allowed designers to create new and innovative products, such as fully working MAGLEV trains and hoverboards.
The engineering context
Utilising scientific principles for product design constitutes a significant component within the new GCSE curriculum for Design & Technology and Engineering. The insights acquired from this approach can also be harnessed while leveraging magnetic forces and other associated scientific phenomena to bolster the conceptualisation of upcoming products.
Suggested learning outcomes
Upon completion of this task, students will have the capacity to create a functional levitating hoverboard by applying scientific principles to product design. Additionally, they will be able to effectively convey design concepts using sketches, written notes, and annotations.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
Investigating how hoverboards work
An engaging activity in which students will analyse and investigate how hoverboards work. They will consider the science and technology behind how they are able to levitate, the main features of each design and what that could be improved.
Four experiments with magnets
Super simple fun science experiments
These four fun science experiments using magnets are quick and easy to set up, suitable for learning at home or school. Your students will measure the effects of magnetism as magnets pass through tubes made of different materials; create a visual demonstration of Chaos theory with magnets affecting the swing of a pendulum; feel “attract” and “repel” forces of magnetism by placing magnets on either side of their hand, and use the magnetic field to make an object move as if it is alive.
These four practical experiments demonstrate various different scientific principles related to magnets and magnetism, including:
electromagnetic induction
magnetic fields
chaos theory.
Tools/resources required
Projector/Whiteboard
Magnet kit
2 neodymium magnets
plastic radiator pipe sleeves
copper plumbing pipe
Sticky tape
Blu-tack
Steel nut
Cotton thread
Chairs
This activity could be used as a starter or main activity to introduce the effects of magnetism and magnetic fields, or as one of several activities within a wider scheme of learning focusing on different types of forces. These experiments could also be used as an introduction to power generation or the potential uses of magnets in Design and Technology and Engineering projects.
This activity sheet was developed with the support and participation of the School of Engineering at Cardiff University.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs.
The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Product integration - Design the casing for your food temperature probe
In this activity students will design a prototype for a casing and housing a food temperature probe.
The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons.
Activity: Designing the casing for a food temperature probe
This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product.
Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices.
Students can also create a prototype of their design using modelling materials (e.g., card).
Download our activity overview for a detailed lesson plan on product integration.
The engineering context
Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy.
Suggested learning outcomes
By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Micro:bit food temperature probe project
Creating a working prototype of a food temperature probe
This activity tasks students with using the micro:bit to develop a prototype for a food temperature probe that will warn people when their food is too cold.
It’s an ideal lesson for introducing students to programming, allowing them to develop their skills, make use of programmable components and even embed intelligence into a product’s design.
This is one of a series of resources to support the use of the BBC micro:bit in design and technology (DT) or computing lessons. It can be taught as a main lesson activity with Programmable systems as a starter activity, and Product integration as an extension activity.
Activity: Creating a working prototype of a food temperature probe
The activity starts with students being briefed on the importance of food being prepared or cooked to the correct temperature. Too cold and it could cause food poisoning, too hot and it could burn. Learners will then be asked to use this knowledge to develop a temperature monitoring system using the BBC micro:bit.
The engineering context
Being able to accurately monitor temperature is important within several industries including food, healthcare, electronics, energy, defence and chemical manufacturing. Engineers must therefore design systems that can not only easily monitor temperature but also automatically trigger warnings (such as alarms) or safety mechanisms (such as cooling systems) to regulate temperature.
Suggested learning outcomes
Learners will be able to understand a block systems diagram of the food temperature probe system. They’ll be able to successfully program the BBC micro:bit so that the system meets the design criteria, being able to choose appropriate inputs and output device for the system they’ve designed.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation.
Programmable systems - How much do you know about programmable systems?
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
It is very important that food is prepared or cooked to the correct temperature. Too cold and it could cause food poisoning, too hot and it could burn. A temperature probe can be used to check that the temperature of food is at the right level.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a food temperature probe that will warn people when their food is too cold.
Activity info, teachers’ notes and curriculum links
In this activity, learners will recall and extend their understanding of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Develop a programmable counter
Investigate a decade counter circuit and compare it to a programmable counter
This resource is part of a collection that supports using the BBC micro:bit for Design and Technology lessons.
In this activity, students will investigate a decade counter circuit. They will then compare the operation of this to their programmable counter.
Learners may need to recap basic circuit symbols and the use of circuit diagrams before attempting this activity.
If students have not used circuit simulation software previously, they may benefit from a teacher demonstration of this. Any circuit simulation software that is available in school and that supports decade counters can be used. Popular examples are Circuit Wizard and Yenka.
The teacher may need to check the circuits drawn by learners prior to them testing the circuits, to ensure that they have been correctly drawn, and therefore the test results are accurate.
If learners encounter switch bounce they could investigate the issue further and look at ways to reduce it.
This is an ideal exercise for learners to develop their technical knowledge related to the use of decade counters in electronics and compare their operation to similar programmable systems.
This is a quick and simple activity that will take approximately 20 minutes to complete.
Tools/resources required
Projector/Whiteboard
Exercise books or folders
Circuit simulation software (e.g. Circuit Wizard, Yenka etc.)
What is the BBC micro:bit?
The BBC micro:bit is a small, programmable computer that was designed for education purposes. It was developed by the BBC in partnership with several technology companies, including Microsoft and ARM. The micro:bit features an LED display, buttons, sensors, and Bluetooth connectivity, making it a versatile tool for teaching programming, electronics and other STEM subjects. It is popular in schools around the world and has been used to create a wide range of projects, from simple games to complex robotics. The micro:bit is also affordable and accessible, with many free resources and tutorials available online for students and teachers to use.
Suggested learning outcomes
By the end of this activity students will be able to simulate and test the operation of a decade counter circuit and they will be able to compare and contrast hardware based electronic counters with programmable counters.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Design a prototype score counter
Use the BBC micro:bit programmable system to create a working prototype of a score counter
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will integrate a BBC micro:bit based programmable system into a working product prototype.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Learning more about programmable systems
Students discuss what they do and don’t know about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error.
In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz.
Activity info, teachers’ notes and curriculum links
In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design a new robot that could help people in the future
In this activity, learners will design a new robot that could help people in the future.
Programmable robotic systems are becoming an important part of industrial developments in design and technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
As such, this lesson asks students to explore how electronic and mechanical systems can be integrated to create functioning products like a robot.
This lesson can be followed by Programming the robot buggy with the BBC micro:bit, where learners use the micro:bit to develop a robotic buggy that can successfully navigate a maze or path. These resources are part of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in computing and design & technology (D&T).
Activity: Designing a new robot that could help people in the future
Students will first look at existing robots that are used to help people in our Future Robots presentation and then brainstorm how robots could further assist people in the future.
Learners are tasked with designing a robot that’s unique. Their robot must include both electronic (e.g., programmable circuit board) and mechanical (e.g., motors for movement) parts and they students must explain how these systems work together.
They can use our Future Robot Design handout to draw their robots, adding notes explaining how the electronic and mechanical systems function. Students should use technical language and justify their design decisions (explaining input/output placement, materials, construction methods, etc.).
Download our activity overview for a detailed lesson plan on how to design a robot.
The engineering context
Robotics is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the programme of study for Design and Technology at key stage 3.
It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners.
Suggested learning outcomes
Students will be able to design a robot that can help people in the future. They’ll also improve their understanding of how electronic and mechanical systems can be integrated to create functioning products.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation for free.
Please do share your highlights with us @IETeducation.
Programming the robot buggy with the BBC micro:bit
Work as a team to program the robot buggy so that it can navigate a maze path
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Programmable robotic systems are becoming an important part of industrial developments in Design and Technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
In this unit of learning, learners will use the BBC micro:bit to develop a robotic buggy that can successfully navigate a maze or path.
Activity info, teachers’ notes and curriculum links
In this activity, learners will work as a team to program the robot buggy so that it can navigate a maze path.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Navigating a maze - Create a set of clear instructions to navigate a maze path
Create a set of clear instructions to navigate a maze path
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Programmable robotic systems are becoming an important part of industrial developments in Design and Technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly.
In this unit of learning, learners will use the BBC micro:bit to develop a robotic buggy that can successfully navigate a maze or path.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create a set of clear instructions to help their partner navigate a maze path.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Test and modify the pedestrian crossing system
Create and implement a set of tests for your prototype
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely.
In this unit of learning, learners will integrate a BBC micro:bit based programmable system into a working product prototype.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create and implement a set of tests for their prototype and suggest possible improvements.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Micro:bit traffic light project
Creating a pedestrian crossing system
This activity tasks students with creating a scale model and working prototype for a pedestrian crossing system for a school, using the BBC micro:bit.
This micro:bit traffic light project is an ideal activity for teaching students how to integrate a programmable system into a product design. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in computing and design & technology (D&T).
Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely.
The engineering context
Designing and prototyping are essential processes used by engineers for research and development in manufacturing and product design. Students will how learn how elements of electrical, software and systems engineering can come together to create one final product that can be used by society.
Suggested learning outcomes
This activity will teach students to integrate a programmable system into a prototype scale model. It will help students develop modelling and prototyping skills, allowing them to show creativity and the ability to avoid stereotypical responses when creating design solutions.
Download our activity sheet and related teaching resources for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Golden rules for programmable systems
Create five rules for learning about programmable systems
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a pedestrian crossing for a local secondary school.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create five ‘golden rules’ for others learning about the topic of programmable systems.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation